Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it?
نویسندگان
چکیده
BACKGROUND Intra-islet insulin contributes to alpha-cell suppression. Akita mice carry a toxic-gain-of- function Ins2 gene mutation encoding proinsulin-C(A7)Y, similar to that described in human Mutant Ins-gene induced Diabetes of Youth, which decreases intra-islet insulin. Herein, we examined Akita mice for examination of circulating insulin and circulating glucagon levels. The possibility that loss of intra-islet suppression of alpha-cells, with increased circulating glucagon, contributes to diabetes under conditions of intra-islet insulin deficiency, raises questions about effective treatments that may be available. METHODS Blood glucose, plasma insulin, C-peptide I, C-peptide II, and glucagon were measured at various times during development of diabetes in Akita mice. We also used Akita- like hProC(A7)Y-CpepGFP transgenic mice in Ins2+/+ , Ins2+/- and Ins2-/- genetic backgrounds (providing animals with greater or lesser defects in islet insulin production, respectively) in order to examine the relative abundance of immunostainable intra-islet glucagon-positive and insulin-positive cells. Similar measurements were made in Akita mice. Finally, the effects of treatment with insulin, exendin-4, and leptin on blood glucose were then compared in Akita mice. RESULTS Interestingly, total insulin levels in the circulation were not frankly low in Akita mice, although they did not rise appropriately with the onset of hyperglycemia. By contrast, in severely diabetic Akita mice at 6 weeks of age, circulating glucagon levels were significantly elevated. Additionally, in Ins2+/- and Ins2-/- mice bearing the Akita-like hProC(A7)Y-CpepGFP transgene, development of diabetes correlated with an increase in the relative intra-islet abundance of immunostainable glucagon-positive cells, and a similar observation was made in Akita islets. In Akita mice, whereas a brief treatment with exendin-4 resulted in no apparent improvement in hyperglycemia, leptin treatment resulted in restoration of normoglycemia. Curiously, leptin treatment also suppressed circulating glucagon levels. CONCLUSIONS Loss of insulin-mediated intra-islet suppression of glucagon production may be a contributor to hyperglycemia in Akita mice, and leptin treatment appears beneficial in such a circumstance. This treatment might also be considered in some human diabetes patients with diminished insulin reserve.
منابع مشابه
Treatment effect of GABA on improve type one diabetes in NOD mice
Introduction: Gama amino butyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian nervous system. The concentration of GABA and the number of GABA cell secretion decrease in diabetic patient and experimental diabetes model. The reported effects of GABA activation on insulin secretion from beta cells have been controversial. In this study we investigated if GABA administr...
متن کاملLeptin therapy in insulin-deficient type I diabetes.
In nonobese diabetic mice with uncontrolled type 1 diabetes, leptin therapy alone or combined with low-dose insulin reverses the catabolic state through suppression of hyperglucagonemia. Additionally, it mimics the anabolic actions of insulin monotherapy and normalizes hemoglobin A1c with far less glucose variability. We show that leptin therapy, like insulin, normalizes the levels of a wide ar...
متن کاملHepatic autography in uncontrolled experimental diabetes and its relationships to insulin and glucagon.
Exogenous glucagon is known to increase hepatic lysosomes, but the relationships between endogenous glucagon and insulin levels and hepatic lysosomes have not been examined. To determine if the hormones of the pancreatic islets influence the development of these organelles glycogenosomes, dense bodies, and autophagosomes were morphometrically quantitated in normal rats, in rats with mild strept...
متن کاملAssociation of Basal Hyperglucagonemia with Impaired Glucagon Counterregulation in Type 1 Diabetes
Glucagon counterregulation (GCR) protects against hypoglycemia, but is impaired in type 1 diabetes (T1DM). A model-based analysis of in vivo animal data predicts that the GCR defects are linked to basal hyperglucagonemia. To test this hypothesis we studied the relationship between basal glucagon (BasG) and the GCR response to hypoglycemia in 29 hyperinsulinemic clamps in T1DM patients. Glucose ...
متن کاملAntihyperglycemic effect of Rosa damascena is mediated by PPAR.γ gene expression in animal model of insulin resistance
Insulin resistance is a condition in which insulin signaling and action are impaired in insulin sensitive tissues and results in hyperglycemia, hyperlipidemia and type 2 diabetes mellitus. Our previous studies have shown that rosa damascena has antihyperglycemic effects on diabetic and normal rats. Therefore, we conducted a study to evaluate the effect of this medicinal plant on insulin sensiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016